Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.666
Filtrar
1.
BMC Genomics ; 25(1): 452, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714935

RESUMEN

Apolipoprotein L1 (APOL1) coding variants, termed G1 and G2, are established genetic risk factors for a growing spectrum of diseases, including kidney disease, in individuals of African ancestry. Evidence suggests that the risk variants, which show a recessive mode of inheritance, lead to toxic gain-of-function changes of the APOL1 protein. Disease occurrence and presentation vary, likely due to modifiers or second hits. To understand the role of the epigenetic landscape in relation to APOL1 risk variants, we performed methylation quantitative trait locus (meQTL) analysis to identify differentially methylated CpGs influenced by APOL1 risk variants in 611 African American individuals. We identified five CpGs that were significantly associated with APOL1 risk alleles in discovery and replication studies, and one CpG-APOL1 association was independent of other genomic variants. Our study highlights proximal DNA methylation alterations that may help explain the variable disease risk and clinical manifestation of APOL1 variants.


Asunto(s)
Apolipoproteína L1 , Islas de CpG , Metilación de ADN , Epigénesis Genética , Predisposición Genética a la Enfermedad , Genotipo , Sitios de Carácter Cuantitativo , Apolipoproteína L1/genética , Humanos , Negro o Afroamericano/genética , Alelos , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Apolipoproteínas/genética , Femenino
2.
BMC Pregnancy Childbirth ; 24(1): 347, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711000

RESUMEN

BACKGROUND: This study investigates the causal relationship between lipid traits and GDM in an effort to better understand the aetiology of GDM. METHODS: Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymorphisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supplementary methods such as MR-Egger for comprehensive assessment. RESULTS: Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely correlated with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI). CONCLUSION: The study demonstrates a significant causal relationship between apoA-I and GDM risk.


Asunto(s)
Apolipoproteína A-I , HDL-Colesterol , Diabetes Gestacional , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Triglicéridos , Humanos , Femenino , Embarazo , Diabetes Gestacional/genética , Diabetes Gestacional/sangre , Triglicéridos/sangre , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , HDL-Colesterol/sangre , Apolipoproteínas/sangre , Apolipoproteínas/genética , Índice de Masa Corporal , Lípidos/sangre , Factores de Riesgo
3.
J Alzheimers Dis ; 98(4): 1361-1375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578887

RESUMEN

Background: Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective: To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods: Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results: Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p <  0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions: Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas B , Colesterol , Contactinas
4.
Cell Mol Life Sci ; 81(1): 134, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478101

RESUMEN

The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Apolipoproteínas L , Apolipoproteína L1/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Miosinas
5.
Front Immunol ; 15: 1328297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550599

RESUMEN

Background: Obesity and dyslipidemia, major global health concerns, have been linked to psoriasis, but previous studies faced methodological limitations and their shared genetic basis remains unclear. This study examines various obesity-related and lipidemic traits as potential contributors to psoriasis development, aiming to clarify their genetic associations and potential causal links. Methods: Summary statistics from genome-wide association studies (GWAS) conducted for obesity-related traits (body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-hip ratio adjusted for the body mass index (WHRadjBMI)) and lipidemic traits (high-density lipoprotein (HDL), LDL, triglyceride (TG), total Cholesterol (TC), apolipoprotein A1 (apoA1), apolipoprotein B (apoB), and apolipoprotein E (apoE)) and psoriasis, all in populations of European ancestry, were used. We quantified genetic correlations, identified shared loci and explored causal relationship across traits. Results: We found positive genetic correlation between BMI and psoriasis (rg=0.22, p=2.44×10-18), and between WHR and psoriasis (rg=0.19, p=1.41×10-12). We further found the positive genetic correlation between psoriasis and WHRadjBMI(rg=0.07, p=1.81×10-2) the genetic correlation, in while the effect of BMI was controlled for. We identified 14 shared loci underlying psoriasis and obesity-related traits and 43 shared loci between psoriasis and lipidemic traits via cross-trait meta-analysis. Mendelian randomization (MR) supported the causal roles of BMI (IVW OR=1.483, 95%CI=1.333-1.649), WHR (IVW OR=1.393, 95%CI=1.207-1.608) and WHRadjBMI (IVW OR=1.18, 95%CI=1.047-1.329) in psoriasis, but not observe any significant association between lipidemic traits and the risk of psoriasis. Genetic predisposition to psoriasis did not appear to affect the risk of obesity and lipidemic traits. Conclusions: An intrinsic link between obesity-related traits and psoriasis has been demonstrated. The genetic correlation and causal role of obesity-related traits in psoriasis highlight the significance of weight management in both the prevention and treatment of this condition.


Asunto(s)
Estudio de Asociación del Genoma Completo , Psoriasis , Humanos , Obesidad/genética , Fenotipo , Psoriasis/genética , Apolipoproteínas/genética
6.
EBioMedicine ; 101: 105000, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360481

RESUMEN

BACKGROUND: APOL1 variants G1 and G2 are common in populations with recent African ancestry. They are associated with protection from African sleeping sickness, however homozygosity or compound heterozygosity for these variants is associated with chronic kidney disease (CKD) and related conditions. What is not clear is the extent of associations with non-kidney-related disorders, and whether there are clusters of diseases associated with individual APOL1 genotypes. METHODS: Using a cohort of 7462 UK Biobank participants with recent African ancestry, we conducted a phenome-wide association study investigating associations between individual APOL1 genotypes and conditions identified by the International Classification of Disease phenotypes. FINDINGS: We identified 27 potential associations between individual APOL1 genotypes and a diverse range of conditions. G1/G2 compound heterozygotes were specifically associated with 26 of these conditions (all deleteriously), with an over-representation of infectious diseases (including hospitalisation and death resulting from COVID-19). The analysis also exposed complexities in the relationship between APOL1 and CKD that are not evident when risk variants are grouped together: G1 homozygosity, G2 homozygosity, and G1/G2 compound heterozygosity were each shown to be associated with distinct CKD phenotypes. The multi-locus nature of the G1/G2 genotype means that its associations would go undetected in a standard genome-wide association study. INTERPRETATION: Our findings have implications for understanding health risks and better-targeted detection, intervention, and therapeutic strategies, particularly in populations where APOL1 G1 and G2 are common such as in sub-Saharan Africa and its diaspora. FUNDING: This study was funded by the Wellcome Trust (209511/Z/17/Z) and H3Africa (H3A/18/004).


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Humanos , Apolipoproteína L1/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Insuficiencia Renal Crónica/genética , Apolipoproteínas/genética , Factores de Riesgo
7.
Am J Clin Nutr ; 119(4): 981-989, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211689

RESUMEN

BACKGROUND: Apolipoproteins (APOs) have emerged as significant players in lipid metabolism that affects the risk of chronic disease. However, the impact of circulating APO concentrations on premature death remains undetermined. OBJECTIVES: This study aimed to investigate the associations of serum APOs with all-cause, cardiovascular disease (CVD)-related, and cancer-related mortality. METHODS: We included 340,737 participants who had serum APO measurements from the UK Biobank. Restricted cubic splines and multivariable Cox regression models were used to assess the associations between APOs and all-cause and cause-specific mortality by computing hazard ratios (HRs) and 95% confidence intervals (CIs). Based on 1-sample Mendelian randomization (MR) design, including 398,457 participants of White ancestry who had genotyping data from the UK Biobank, we performed instrumental variable analysis with 2-stage least squares regression to assess the association between genetically predicted APOs and mortality. RESULTS: After adjusting for potential confounders including high-density and low-density lipoprotein particles, we observed nonlinear inverse relationships of APOA1 with all-cause, CVD-related, and cancer-related mortality (P-nonlinear < 0.001). By contrast, positive relationships were observed for APOB and all-cause (P-nonlinear < 0.001), CVD-related (P-linear < 0.001), and cancer-related (P-linear = 0.03) mortality. MR analysis showed consistent results, except that the association between APOB and cancer mortality was null. Furthermore, both observational and MR analyses found an inverse association between APOA1 and lung cancer-related mortality (HR comparing extreme deciles: 0.46; 95% CI: 0.26, 0.80; and HR: 0.78; 95% CI: 0.63, 0.97, respectively). CONCLUSIONS: Our findings indicate that circulating APOA1 has potential beneficial effects on all-cause, CVD-related, and lung cancer-related death risk, whereas APOB may confer detrimental effects on all-cause and CVD-related death risk.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias Pulmonares , Humanos , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Apolipoproteínas/genética , Apolipoproteínas B
8.
Gene ; 895: 147976, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952748

RESUMEN

Despite remarkable discoveries in the genetic susceptibility of coronary artery disease (CAD), a large part of heritability awaits identification. Epistasis or gene-gene interaction has a profound influence on CAD and might contribute to its missed genetic variability; however, this impact was largely unexplored. Here, we appraised the associations of gene-gene interactions and haplotypes of five polymorphisms, namely methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, angiotensin converting enzyme (ACE) insertion/deletion (I/D), apolipoprotein B (APOB) R3500Q, and apolipoprotein E (APOE) ε4 with the risk of myocardial infarction (MI) and unstable angina (UA). Gene-environment interactions with traditional risk factors and clinical data were also scrutinized. This study recruited 100 MI, 50 UA patients, and 100 apparently healthy controls. Logistic regression models were employed in association analyses. We remarked that the single locus effect of individual polymorphisms was relatively weak; however, a magnified effect of their combination via gene-gene interaction may predict MI risk after adjustment for multiple comparisons. Only MTHFR C677T, ACE I/D, and APOB R5300Q were associated with the risk of UA, and the ACE I/D-R3500Q interaction posed a decreased UA risk. APOB R3500Q was in strong linkage disequilibrium with MTHFR C677T, ACE I/D, and APE ε4 polymorphisms. The TCDGε3, CADGε4, and TADGε4-C677T-A1298C-ACE I/D-R3500Q-APOE haplotypes were associated with escalating MI risk, while the CDG or CIG-C677T-ACE I/D-R3500Q haplotype was highly protective against UA risk compared to controls. Interestingly, the CADGε4 and CAIGε3 haplotypes were strongly associated with the presence of diabetes and hypertension, respectively in MI patients; both haplotypes stratified patients according to the ECHO results. In UA, the CDG haplotype was negatively associated with the presence of diabetes or dilated heart. Conclusively, our results advocate that a stronger combined effect of polymorphisms in MTHFR, ACE, APOB, and APOE genes via gene-gene and gene-environment interactions might help in risk stratification of MI and UA patients.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Infarto del Miocardio , Humanos , Frecuencia de los Genes , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Peptidil-Dipeptidasa A/genética , Egipto , Polimorfismo Genético , Predisposición Genética a la Enfermedad , Infarto del Miocardio/genética , Enfermedad de la Arteria Coronaria/genética , Angina Inestable , Apolipoproteínas E/genética , Apolipoproteínas B/genética , Apolipoproteínas/genética , Estudios de Casos y Controles , Genotipo
9.
Br J Haematol ; 204(4): 1483-1494, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38031970

RESUMEN

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease. Cellular and systemic lipid metabolism plays a significant role in the regulation of immune cell activities. However, the role of lipoprotein lipids and apolipoproteins in ITP remains elusive. The automatic biochemistry analyser was used to measure the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA-I), apoB, apoE and lipoprotein a [LP(a)]. Genetic variants strongly associated with circulating lipoprotein lipids and apolipoproteins (LDL-C, apoB, TG, HDL-C and apoA-I) were extracted to perform Mendelian randomization (MR) analyses. Finally, drug-target MR and passive ITP mice model was used to investigate the potential druggable targets of ITP. Levels of HDL-C, apoA-I, decreased and LP(a) increased in ITP patients compared with healthy controls. Low HDL-C was causally associated with ITP susceptibility. Through drug-target MR and animal modelling, ABCA1 was identified as a potential target to design drugs for ITP. Our study found that lipid metabolism is related to ITP. The causative association between HDL-C and the risk of ITP was also established. The study provided new evidence of the aetiology of ITP. ABCA1 might be a potential drug target for ITP.


Asunto(s)
Apolipoproteína A-I , Púrpura Trombocitopénica Idiopática , Animales , Ratones , Humanos , Apolipoproteína A-I/genética , LDL-Colesterol , Lípidos , Análisis de la Aleatorización Mendeliana , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/genética , Apolipoproteínas/genética , Triglicéridos , HDL-Colesterol
10.
Artículo en Inglés | MEDLINE | ID: mdl-38043730

RESUMEN

The Apolipophorin-III (apoLp-III) is reported as an essential protein element in lipids transport and incorporation in lepidopterans. Structurally, apoLp-III has an α-helix bundle structure composed of five α-helices. Interestingly, classic studies proposed a structural switch triggered by its interaction with lipids, where the α-helix bundle opens. Currently, the study of the apoLp-III has been limited to insects, with no homologs identified in other arthropods. By implementing a structure-based search with the Phyre2 algorithm surveying the shrimp Litopenaeus vannamei's transcriptome, we identified a putative apoLp-III in this farmed penaeid (LvApoLp-III). Unlike canonical apoLp-III, the LvApoLp-III was identified as an internal domain within the transmembrane protein Prominin-1. Structural modeling using the template-based Phyre2 and template-free AlphaFold algorithms rendered two distinct structural topologies: the α-helix bundle and a coiled-coil structure. Notably, the secondary structure composition on both models was alike, with differences in the orientation and distribution of the α-helices and hydrophobic moieties. Both models provide insights into the classical structural switch induced by lipids in apoLp-III. To corroborate structure/function inferences, we cloned the synthetic LvApoLp-III domain, overexpressed, and purified the recombinant protein. Circular dichroism measurements with the recombinant LvApoLp-III agreed with the structural models. In vitro liposome interaction demonstrated that the apoLp-III domain within the PROM1 of L.vannamei associated similarly to exchangeable apolipoproteins. Altogether, this work reports the presence of an apolipophorin-III domain in crustaceans for the first time and opens questions regarding its function and importance in lipid metabolism or the immune system.


Asunto(s)
Apolipoproteínas , Liposomas , Animales , Antígeno AC133 , Apolipoproteínas/química , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Estructura Secundaria de Proteína , Liposomas/química
11.
Cell Rep ; 42(12): 113528, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38041817

RESUMEN

Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.


Asunto(s)
Apolipoproteína L1 , Membranas Mitocondriales , Apolipoproteína L1/genética , Membranas Mitocondriales/metabolismo , Aparato de Golgi/metabolismo , Mitocondrias , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Dinámicas Mitocondriales
12.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139244

RESUMEN

The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.


Asunto(s)
Relojes Circadianos , Metabolismo de los Lípidos , Ratones , Animales , Metabolismo de los Lípidos/genética , Encéfalo/metabolismo , Ritmo Circadiano/genética , Núcleo Supraquiasmático/metabolismo , Relojes Circadianos/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Mamíferos/metabolismo
13.
Nat Commun ; 14(1): 7836, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036523

RESUMEN

African Americans have a significantly higher risk of developing chronic kidney disease, especially focal segmental glomerulosclerosis -, than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of African Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1-associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Humanos , Glomeruloesclerosis Focal y Segmentaria/genética , Apolipoproteína L1/genética , Predisposición Genética a la Enfermedad , Factores de Riesgo , Genotipo , Apolipoproteínas/genética
14.
Nutrients ; 15(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960150

RESUMEN

(1) Background: The relationship between lipids, apolipoproteins, and telomere length (TL) has been explored in previous studies; however, the causal relationship between the two remains unclear. This study aims to assess the causal relationship between lipids, apolipoproteins, and TL using the two-sample Mendelian randomization (MR) approach; (2) Methods: This study comprehensively employed both univariate MR (uvMR) and multivariate MR (mvMR) methods to genetically evaluate the associations between 21 exposures related to lipids and apolipoproteins and the outcome of TL. During the analysis process, we utilized various statistical methods, including Inverse Variance Weighting (IVW), Weighted Median, MR-Egger regression, MR-PRESSO, and outlier tests. Furthermore, to confirm the robustness of the results, we conducted several sensitivity analyses to explore potential heterogeneity; (3) Results: The uvMR analysis indicated that an increase in MUFA, MUFA/FA ratio, LDL-C, VLDL-C, total cholesterol, ApoB, and triglycerides (TG) was associated with an increase in TL. However, this relationship did not manifest in the mvMR analysis, suggesting that this association may be based on preliminary evidence; (4) Conclusions: MR analysis results suggest potential suggestive positive causal relationships between genetically predicted MUFA, MUFA/FA ratio, LDL-C, VLDL-C, total cholesterol, ApoB, and TG with TL.


Asunto(s)
Apolipoproteínas , Análisis de la Aleatorización Mendeliana , LDL-Colesterol , Apolipoproteínas/genética , Apolipoproteínas B , Triglicéridos , Telómero/genética , Estudio de Asociación del Genoma Completo
15.
J Am Soc Nephrol ; 34(11): 1889-1899, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37798822

RESUMEN

SIGNIFICANCE STATEMENT: African Americans are at increased risk of CKD in part due to high-risk (HR) variants in the apolipoprotein L1 ( APOL1 ) gene, termed G1/G2. A different APOL1 variant, p.N264K , reduced the risk of CKD and ESKD among carriers of APOL1 HR variants to levels comparable with individuals with APOL1 low-risk variants in an analysis of 121,492 participants of African ancestry from the Million Veteran Program (MVP). Functional genetic studies in cell models showed that APOL1 p.N264K blocked APOL1 pore-forming function and ion channel conduction and reduced toxicity of APOL1 HR mutations. Pharmacologic inhibitors that mimic this mutation blocking APOL1 -mediated pore formation may be able to prevent and/or treat APOL1 -associated kidney disease. BACKGROUND: African Americans are at increased risk for nondiabetic CKD in part due to HR variants in the APOL1 gene. METHODS: We tested whether a different APOL1 variant, p.N264K , modified the association between APOL1 HR genotypes (two copies of G1/G2) and CKD in a cross-sectional analysis of 121,492 participants of African ancestry from the MVP. We replicated our findings in the Vanderbilt University Biobank ( n =14,386) and National Institutes of Health All of Us ( n =14,704). Primary outcome was CKD and secondary outcome was ESKD among nondiabetic patients. Primary analysis compared APOL1 HR genotypes with and without p.N264K . Secondary analyses included APOL1 low-risk genotypes and tested for interaction. In MVP, we performed sequential logistic regression models adjusting for demographics, comorbidities, medications, and ten principal components of ancestry. Functional genomic studies expressed APOL1 HR variants with and without APOL1 p.N264K in cell models. RESULTS: In the MVP cohort, 15,604 (12.8%) had two APOL1 HR variants, of which 582 (0.5%) also had APOL1 p.N264K . In MVP, 18,831 (15%) had CKD, 4177 (3%) had ESKD, and 34% had diabetes. MVP APOL1 HR, without p.N264K , was associated with increased odds of CKD (odds ratio [OR], 1.72; 95% confidence interval [CI], 1.60 to 1.85) and ESKD (OR, 3.94; 95% CI, 3.52 to 4.41). In MVP, APOL1 p.N264K mitigated the renal risk of APOL1 HR, in CKD (OR, 0.43; 95% CI, 0.28 to 0.65) and ESKD (OR, 0.19; CI 0.07 to 0.51). In the replication cohorts meta-analysis, APOL1 p.N264K mitigated the renal risk of APOL1 HR in CKD (OR, 0.40; 95% CI, 0.18 to 0.92) and ESKD (OR, 0.19; 95% CI, 0.05 to 0.79). In the mechanistic studies, APOL1 p.N264K blocked APOL1 pore-forming function and ion channel conduction and reduced toxicity of APOL1 HR variants. CONCLUSIONS: APOL1 p.N264K is associated with reduced risk of CKD and ESKD among carriers of APOL1 HR to levels comparable with individuals with APOL1 low-risk genotypes.


Asunto(s)
Apolipoproteína L1 , Salud Poblacional , Insuficiencia Renal Crónica , Humanos , Apolipoproteína L1/genética , Apolipoproteínas/genética , Estudios Transversales , Predisposición Genética a la Enfermedad , Genotipo , Canales Iónicos/genética , Insuficiencia Renal Crónica/genética , Negro o Afroamericano/genética
16.
Fish Shellfish Immunol ; 141: 109069, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696347

RESUMEN

Apolipoprotein E (ApoE), a critical targeting protein, has been found to play an essential role in the protection against infection and inflammation. However, the immune functions of ApoE against bacterial infection in fish have not been investigated. In this study, a full-length cDNA for ApoE, named On-ApoEb was cloned from Oreochromis niloticus. The predicted cDNA sequence was 831bp in length and coded for a protein of 276 amino acid residues, which shared 63.87%-98.55% identity with ApoEb from other fishes, and about 22% identity with ApoEb from mammals. On-ApoEb from O. niloticus was highly expressed in the liver and could be activated in the tissues (liver, spleen, brain, and intestine) after infection with Streptococcus agalactiae. Moreover, the results revealed that On-ApoEb could decrease the expression levels of pro-inflammatory factors, immune-related pathways, and apoptosis, while increasing the expression levels of anti-inflammatory factors. Furthermore, On-ApoEb was noted to improve the survival rate and reduce the bacterial load in the liver and spleen. These results suggested that On-ApoEb was connected with immune response and had anti-inflammation and anti-apoptosis activities.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Secuencia de Aminoácidos , Streptococcus agalactiae/fisiología , ADN Complementario/genética , Apolipoproteínas/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas de Peces/química , Regulación de la Expresión Génica , Mamíferos/metabolismo
18.
Diabet Med ; 40(12): e15213, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37638553

RESUMEN

AIM: This study aims to investigate the associations between genetic risk scores (GRS) for favourable and unfavourable adiposity and a wide range of adiposity-related outcomes across diverse populations. METHODS: We utilised previously identified variants associated with favourable (36 variants) and unfavourable (38 variants) adiposity to create GRS for each adiposity phenotype. We used summary statistics from 39 outcomes generated by the Pan-UKB genome-wide association studies Version 0.3, incorporating covariates such as age, sex and principal components in six populations: European (n = 420,531), African (6636), American (980), Central/South Asian (8876), East Asian (2709) and Middle Eastern (1599). RESULTS: The favourable adiposity GRS was associated with a healthy metabolic profile, including lower risk of type 2 diabetes, lower liver enzyme levels, lower blood pressure, higher HDL-cholesterol, lower triglycerides, higher apolipoprotein A, lower apolipoprotein B, higher testosterone, lower calcium and lower insulin-like growth factor 1 generally consistently across all the populations. In contrast, the unfavourable adiposity GRS was associated with an adverse metabolic profile, including higher risk of type 2 diabetes, higher random glucose levels, higher HbA1c, lower HDL-cholesterol, higher triglycerides, higher liver enzyme levels, lower testosterone, and higher C-reactive protein generally consistently across all the populations. CONCLUSION: The study provides evidence that the genetic scores associated with favourable and unfavourable adiposity have consistent effects on metabolic profiles and disease risk across diverse ethnic groups. These findings deepen our understanding of distinct adiposity subtypes and their impact on metabolic health.


Asunto(s)
Adiposidad , Diabetes Mellitus Tipo 2 , Humanos , Adiposidad/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Etnicidad/genética , Estudio de Asociación del Genoma Completo , Obesidad/epidemiología , Obesidad/genética , Factores de Riesgo , HDL-Colesterol/metabolismo , Triglicéridos , Metaboloma , Testosterona , Apolipoproteínas/genética , Apolipoproteínas/metabolismo
19.
Metabolism ; 146: 155611, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37270173

RESUMEN

BACKGROUND: Short-term clinical trials have shown the cholesterol-lowering potentials of phytosterols, but their impacts on cardiovascular disease (CVD) remain controversial. This study used the Mendelian randomization (MR) to investigate the relationships between genetic predisposition to blood sitosterol concentration and 11 CVD endpoints, along with the potential mediating effects of blood lipids and hematological traits. METHODS: Random-effect inverse-variance weighted method was used as the main analysis of MR. Genetic instruments of sitosterol (seven SNPs, F = 253, and R2 = 15.4 %) were derived from an Icelandic cohort. Summary-level data of the 11 CVDs were obtained from UK Biobank, FinnGen, and publicly available genome-wide association study results. RESULTS: Genetically predicted one unit increment in log-transformed blood total sitosterol was significantly associated with a higher risk of coronary atherosclerosis (OR: 1.52; 95 % CI: 1.41, 1.65; n = 667,551), myocardial infarction (OR: 1.40; 95 % CI: 1.25, 1.56; n = 596,436), all coronary heart disease (OR: 1.33; 95 % CI: 1.22, 1.46; n = 766,053), intracerebral hemorrhage (OR: 1.68; 95 % CI: 1.24, 2.27; n = 659,181), heart failure (OR: 1.16; 95 % CI: 1.08, 1.25; n = 1,195,531), and aortic aneurysm (OR: 1.74; 95 % CI: 1.42, 2.13; n = 665,714). Suggestive associations were observed for an increased risk of ischemic stroke (OR: 1.06; 95 % CI: 1.01, 1.12; n = 2,021,995) and peripheral artery disease (OR: 1.20; 95 % CI: 1.05, 1.37; n = 660,791). Notably, blood non-high-density lipoprotein cholesterol (nonHDL-C) and apolipoprotein B mediated about 38-47 %, 46-60 %, and 43-58 % of the associations between sitosterol and coronary atherosclerosis, myocardial infarction, and coronary heart disease, respectively. However, the associations between sitosterol and CVDs were less likely to depend on hematological traits. CONCLUSION: The study suggests that genetic predisposition to higher blood total sitosterol is linked to a greater risk of major CVDs. Moreover, blood nonHDL-C and apolipoprotein B might mediate a significant proportion of the associations between sitosterol and coronary diseases.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Fitosteroles , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Sitoesteroles , Análisis de la Aleatorización Mendeliana , Predisposición Genética a la Enfermedad , Fitosteroles/efectos adversos , Fitosteroles/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Lípidos , Infarto del Miocardio/epidemiología , Infarto del Miocardio/genética , Colesterol , Apolipoproteínas/genética , Polimorfismo de Nucleótido Simple
20.
J Alzheimers Dis ; 93(4): 1195-1210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182889

RESUMEN

Alzheimer's disease (AD) is a progressive degenerative disease of the nervous system (CNS) with an insidious onset. Clinically, it is characterized by a full range of dementia manifestations including memory impairment, aphasia, loss of speech, loss of use, loss of recognition, impairment of visuospatial skills, and impairment of executive function, as well as changes in personality and behavior. The exact cause of AD has not yet been identified. Nevertheless, modern research indicates that genetic factors contribute to 70% of human's risk of AD. Apolipoprotein (APOE) accounts for up to 90% of the genetic predisposition. APOE is a crucial gene that cannot be overstated. In addition, innate immunity plays a significant role in the etiology and treatment of AD. Understanding the different subtypes of APOE and their interconnections is of paramount importance. APOE and innate immunity, along with their relationship to AD, are primary research motivators for in-depth research and clinical trials. The exploration of novel technologies has led to an increasing trend in the study of AD at the cellular and molecular levels and continues to make more breakthroughs and progress. As of today, there is no effective treatment available for AD around the world. This paper aims to summarize and analyze the role of APOE and innate immunity, as well as development trends in recent years. It is anticipated that APOE and innate immunity will provide a breakthrough for humans to hinder AD progression in the near future.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteínas/genética , Predisposición Genética a la Enfermedad , Apolipoproteínas E/genética , Inmunidad Innata , Apolipoproteína E4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA